Critical point theorem for asymptotically quadratic functional without compactness
نویسندگان
چکیده
منابع مشابه
Existence of Multiple Critical Points for an Asymptotically Quadratic Functional with Applications
Morse theory for isolated critical points at infinity is used for the existence of multiple critical points for an asymptotically quadratic functional. Applications are also given for the existence of multiple nontrivial periodic solutions of asymptotically Hamiltonian systems.
متن کاملA Fixed-point Theorem for Asymptotically Contractive Mappings
We present fixed point theorems for a nonexpansive mapping from a closed convex subset of a uniformly convex Banach space into itself under some asymptotic contraction assumptions. They generalize results valid for bounded convex sets or asymptotically compact sets. In this note we generalize a famous result by Browder [3], Göhde [6] and Kirk [8], recently extended by Luc in [14], by using the ...
متن کاملOn Compactness Theorem
In this talk we investigate the compactness theorem (as a property) in non-classical logics. We focus on the following problems: (a) What kind of semantics make a logic having compactnesss theorem? (b) What is the relationship between the compactness theorem and the classical model existence theorem (CME)/model existence theorem?
متن کاملShelah’s Singular Compactness Theorem
We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some examples. This exposition is based on lectures given at CRM in
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2010
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.04.071